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SUMMARY 
The bifurcation of confined swirling flows was numerically investigated by employing both the k--E and 
algebraic stress turbulence models. Depending upon the branch solution examined, dual flow patterns were 
predicted at certain swirl levels. In the lower-branch solution which is obtained by gradually increasing 
the swirl level from a low-swirl flow, the flow changes with increasing swirl number from the low-swirl 
flow pattern to a high-swirl flow pattern. In the upper-branch solution which is acquired by gradually 
decreasing the swirl level from a high-swirl flow, on the other hand, the flow can maintain itself in the 
high-swirl flow pattern at the swirl levels where it exhibits the low-swirl flow pattern in the lower branch. 
The bifurcation of confined swirling flows was predicted with either the k-e model or the algebraic stress 
model being employed. Both the k--E and algebraic stress models result in comparable and sufficiently good 
predictions for confined swirling flows if high-order numerical schemes are used. The reported poor 
performance of the k--E model was clarified to be mainly attributable to the occurrence of the bifurcation 
and the use of low-order numerical schemes. 
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INTRODUCTION 

Swirling flow in a sudden-expansion cylindrical combustor is characterized by two reverse flow 
zones: the external recirculation zone (ERZ) and the internal recirculation zone (IRZ). The 
former, resulting from flow separation, is located in the upstream comer region of the combustor. 
The latter, mainly caused by vortex breakdown of the swirling flow, occurs in the upstream 
central region of the combustor. When the swirl level is low, the ERZ is longer than the IRZ. 
This flow pattern is classified as the low-swirl one. As observed in both experimental studies 
and theoretical predictions,' an increase in swirl seems to, at least initially, expand the IRZ in 
both width and length. This IRZ expansion prevents the ERZ from expanding to the downstream 
region and the IRZ becomes longer than the ERZ. This flow pattern is thus classified as the 
high-swirl one. In the transition region between the low- and high-swirl flow patterns, results 
from the present study suggest that, depending upon the initially assumed flow conditions, dual 
solutions may be obtained. If the swirl level is gradually decreased from an initially assumed 
high-swirl flow, the flow can maintain itself in the high-swirl flow pattern at  the swirl levels 
where the low-swirl flow pattern should be exhibited if a low-swirl flow is initially postulated. 
In other words, both the high- and low-swirl flow patterns may result under equivalent inlet 
swirl conditions. Apparently, this bifurcation phenomenon is deeply associated with the inter- 
ference between the two reverse flow zones (ERZ and IRZ). 

A similar bifurcation phenomenon, also due to the interference between two reverse flow 
zones, has been reported in studies of the flow through a plane symmetric sudden expansion, 
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as experimentally documented by Durst et al.,' Chedron et al.,3 so be^,^ Fearn et al.' and more 
recently by Durst er d 6  In this case, although the boundary is symmetric, the flow was found 
to become asymmetric about the central plane as the Reynolds number was increased, resulting 
in one separation region being larger than the other. The flow could be disturbed from one of 
the two stable positions to the other by blowing into one separation region through a small 
tube, as demonstrated by Durst et a1.' The asymmetry remains in the flow even up to turbulent 
flow conditions,' indicating that the bifurcation of the flow through a plane symmetric sudden 
expansion may occur in both laminar and turbulent flows. Asymmetric steady flows are exhibited, 
however, only when the Reynolds number exceeds a critical value or the interference between 
both reverse flow zones is sufficiently strong, a situation similar to the bifurcation of a confined 
swirling flow. 

Although the bifurcation of a confined swirling flow has not been reported previously, its 
occurrence has in fact been implicitly exhibited in certain published works. For instance, when 
Sloan et al. I evaluated various turbulence models for swirling flows by comparing predictions 
with the experimental data of Yoon and Li l le~ , ' ?~  the low- and high-swirl flow patterns were 
predicted by the k-c model for the 38" and 45" swirl vane angle cases respectively. Since the 
measurements exhibited the high-swirl flow pattern for both swirl vane angle cases, the discrepant 
predictions were thus attributed to the poor performance of the k--E mode.' However, since the 
difference in the swirl vane angle is small (only 7"). it is unusual for the k--E model to give very 
different flow predictions for the two cases. As illustrated later in the present study, these two 
flow predictions are in fact coincident with the low- and high-swirl flow patterns respectively. 
For the 38" swirl vane angle case the high-swirl flow pattern can also be predicted by the k--E 
model as long as the solution is obtained by gradually decreasing the swirl level from an initially 
assumed high-swirl flow. In other words, the poor performance of the k--E model reported by 
Sloan et al.' for the prediction of Yoon and Lilley's may be mainly attributed 
to the occurrence of the bifurcation rather than the model's incapability. The second piece of 
evidence for the bifurcation of a confined swirling flow is found in a work presented by Weber 
er a1." in assessing turbulence modelling for the engineering prediction of swirling vortices in 
the near-burner zone. Weber er al. concluded that reliable predictions can be made if fine 
numerical grids are used in conjunction with the QUICK method (a high-order numerical 
scheme) as well as the algebraic stress model (ASM). The k--E model was reported to perform 
poorly in the prediction of confined swirling flows. An examination of the flow patterns presented 
by Weber et al.," however, reveals that the flow patterns predicted by the k-E model and the 
ASM are coincident with the low- and high-swirl flow patterns respectively. It is thus suspected 
that the discrepant predictions of the flow patterns may also be due to the occurrence of the 
bifurcation rather than the poor performance of the k--E model, since by using the k--E model in 
conjunction with high-order convection-diffusion schemes, satisfactory predictions of a confined 
double-concentric swirling flow have been reported recently by Durst and Wennerberg." 

The occurrence of the bifurcation may thus be deeply involved with regard to the engineering 
prediction of a confined swirling flow. However, it has never been discovered previously. In the 
present study this bifurcation phenomenon is explored through a numerical analysis with either 
the k--E model or the ASM being employed. Effects of both the low- and high-order numerical 
schemes on the prediction of a confined swirling flow are also investigated, especially for 
situations where the bifurcation occurs. Therefore the influences of the bifurcation phenomenon, 
turbulence models and numerical schemes on the prediction of a confined swirling flow can be 
clarified. In particular, the cause for the poor performance of the k--E model reported by Sloan 
et al.' is identified and the relative importance of numerical schemes with respect to turbulence 
models in obtaining satisfactory predictions for this particular case is also examined. 
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FORMULATIONS 

The test section of the experiments conducted by Yoon and Lilley8*9 serves as the basis of the 
present study (see Figure l(a)). The single air stream enters the test section through a secondary 
annulus, passing through an adjustable vane swirler. The continuity and momentum equations 
governing such an axisymmetric swirling flow can be expressed as 

a l a  
-- (pu) + .- - ( r p c )  = 0, ax r ar 

2X (pus - p E) + ( r p f i s  - r p  - d r  

(PI% + pv'w') - - - ( r p )  - - (pu'w') - - - (rpu'w'). 
1 - a 2  s - 1 2  - 
r r2  ar  2X r d r  

= - (4) 

Owing to the classical closure problem in turbulence theory, the Reynolds stresses must be related 
to known or calculable mean flow field variables. Two turbulence models were considered in 
this study, the k--c: model and the ASM, which are elaborated in the following. 

The k-c model 

gradient. The constant of proportionality, denoted the eddy or turbulence viscosity, is given by 
The k-c model assumes that the Reynolds stress is proportional to the mean velocity 

k 2  
p' = C,P - 9  

& 

where the turbulent kinetic energy k and the turbulent dissipation rate E satisfy the respective 
transport equations 
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Figure 1 .  (a) Schematic diagram of Yoon and Lilley' test section. (b) Grid system employed for computations (42 x 32) 

with 

Here p e  denotes the effective viscosity, defined as p e  = p + p'. The resultant momentum 
equations of the k--E model are thus given as 
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The algebraic stress model ( A S M )  

Adopting Rodi's approximation that the local value of a / k  is spatially invariant, the 
Reynolds stress transport equations may be reduced to their algebraic equivalent' and the 
resultant algebraic equations for the six Reynolds stresses are given as 
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where 

For the convenience of numerical computation, the governing equations are usually required 
to be composed of distinct convective, diffusive and source terms. In the ASM, however, the 
diffusion terms of the governing equations only involve the laminar diffusion and are substanti- 
ally smaller than the convective terms, causing a problem of numerical stability. Therefore 
equivalent eddy viscosity diffusion terms are added and subtracted in the governing equations 
in order to overcome this problem." As a result, the k- and &-equations in the ASM are given as 
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- . .  

The momentum equations associated with the ASM are expressed as 

The turbulence model constants adopted in the present study are C ,  = 0.09, 6, = 0.9, 6, = 1.22, 
Ck = 0.22, C,, = 1.44, Ccz = 1.92, C,, = 0.15, C,,,,,, = 2 5  and CASM.2 = 0.55. 

Inlet and boundry conditions 

The inlet k was assumed as kin = R,&, where R, = 0.039, and for the inlet E the equation 
proposed by Sturgess er al." was adopted, i.e. gin = k;i5/@333l, where 1 is a characteristic 
dimension of the flow passage and is assumed to be one-tenth of the difference between the 
outer and inner diameters of a vane swirler that has 10 vanes.* In order to identify the cause 
of the unusual predictions of Sloan el d.,' the same inlet axial and radial velocity profiles as 
those of Sloan et al.'s computations' for the 38" swirl vane angle case of Yoon and Lilley's 

are assumed. The inlet tangential velocity profile is, however, assumed propor- 
tional to that of the 38" swirl vane angle case. Thus different swirl numbers, defined as 
S N  = J$ r2puw dr/(Ri l$ rpuu dr), are obtained simply by changing the proportionality constant 
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for the inlet tangential velocity. For the 38" swirl vane angle case the assumed inlet velocity 
profiles are thus exactly the same as the inlet data assumed by Sloan et al.' It is noted that as 
the vane angle changes, not only the inlet tangential but also the inlet axial and radial velocities 
vary. Therefore the inlet axial and radial velocity profiles assumed in this manner are simply 
for convenience to identify the bifurcation phenomenon. The wall function r n e t h ~ d ' . ' ~  is adopted 
for both the k--E model and the ASM in order to eliminate the need for fine grids in the near-wall 
region of a turbulent flow. A zero-gradient condition for all variables and a zero radial velocity 
are applied at the symmetry axis. At the outlet stream the axial velocity is determined from the 
overall mass conservation, while the radial velocity is set to zero. The other variables are assumed 
to follow the local one-way behaviour'" and need no specific information at the outlet boundary. 

Solution procedure 

The governing equations are discretized into their algebraic counterparts based on the finite 
volume method, and the SIMPLER a l g ~ r i t h m ' ~  is applied to solve the gas flow field. The 
line-by-line tridiagonal matrix algorithm (TDMA), featuring a back-and-forth sweep that 
alternates in direction, is used as the equation solver and incorporates the block correction 
procedure'' for increased computational efficiency. The power law schemeI4 is used for the 
convective and diffusive fluxes over the control volume surface. For the flow computation with 
a high-order numerical scheme, the second-order upwind (SOU) scheme' is employed for the 
velocity calculations. A staggered grid system is adopted to avoid zigzag pressure and velocity 
distributions. Thus all scalar quantities are stored at the nodal points of cells, whereas velocity 
components are stored on the cell faces. An orthogonal non-uniform grid system consisting of 
42 x 32 grids (see Figure l(b)) is employed, with grids being contracted towards the solid walls. 
Grid independence has been achieved, since a 50% increase in axial or radial grids results in 
no significant discrepancies in predictions. Rigorous convergence is assured by requiring the 
maximum residual of the numerical equations to reduce to a prescribed small value and the 
relative difference in the variables between two iterations to be smaller than As a result, 
more than 5000 iterations are needed for some computations employing the ASM. 

RESULTS AND DISCUSSION 

For the flow configuration depicted in Figure l(a) both an ERZ and an IRZ result. The ERZ 
is due to the flow separation occurring around the chamber corner, while the IRZ is caused not 
only by the vortex breakdown of the swirling flow but also by the existence of the swirler hub 
acting as a solid wall. Therefore even at the no-swirl limit the IRZ is still expected to exist 
because of the latter situation. 

The bifurcation phenomenon 

In Figure 2 the ratio of the maximum reverse flow rate of the IRZ to that of the ERZ versus 
the swirl number is presented for both the lower- and upper-branch solutions. These results 
were yielded by using the k--E model in conjunction with the power law scheme, similarly to 
those adopted by Sloan et al. The lower-branch solution was obtained by gradually increasing 
the swirl level from a low-swirl flow, while the upper-branch solution was acquired by gradually 
decreasing the swirl level from a high-swirl flow. It is interesting to note that a hysteresis effect 
results as the swirl number increases from 0.34 up to 0.46 along the lower branch and then 
decreases back to 034 following the upper branch, resulting in dual solutions in the swirl number 



968 T. L. JlANG AND C.-H. SHEN 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

SN 
Figure 2. Ratio of the maximum reverse flow rate of the IRZ to that of the ERZ versus the swirl number predicted by 

both the lower and upper branches using the k-E model in conjunction with the power law scheme 

range from 034 to 0.46. An examination of the flow patterns within this small swirl number 
range (see Figure 3(a)-3(d) and 4 ( a w d ) )  reveals that two different flow patterns can be identified 
associated with this hysteresis effect. One is characterized by a prolonged ERZ and a laterally 
flat IRZ, classified here as the low-swirl flow pattern, and the other is characterized by a limited 
size ERZ and a laterally expanding IRZ, classified here as the high-swirl flow pattern. In the 
lower-branch solution (Figures 3(a)-3(d)) the low-swirl flow pattern is exhibited when the swirl 
number is smaller than 0.46 (Figures 3(a)-3(c)), since the swirl is not sufficiently strong to prevent 
the ERZ from expanding towards the downstream region. The low-swirl flow pattern changes 
to the high-swirl one only when the swirl number is sufficiently large, such as 0.46 for the present 
case (Figure 3(d)). With such a relatively large swirl number the IRZ expands laterally and 
prevents the adjacent ERZ from expanding forwards. In the upper-branch solution, on the other 
hand, the high-swirl flow pattern is exhibited when the swirl number is larger than 0.34 (Figures 
4(b)-4(d)). The IRZ is maintained relatively stronger at the swirl numbers where it is relatively 
weaker in the lower branch (compare Figures 3(b), 3(c) and qb),  qc)). The high-swirl flow pattern 
does not change to the low-swirl one until the swirl number is sufficiently low, such as 034  for 
the present case (Figure qa)). As a result, depending upon the branch solution examined, the 
flow exhibits dual patterns at a swirl number between the two values of 034  and 046. For the 
swirl number either smaller than 0-34 or greater than 046, however, the low- and high-swirl 
flow patterns are exhibited for the former and the latter respectively. In these cases only a single 
flow pattern is predicted and both branch solutions are identical. An examination of the 
variations in flow patterns with the swirl number in the lower and upper branches reveals that the 
Occurrence of the bifurcation of a confined swirling flow stems from a hysteresis effect as the 
high-swirl flow pattern changes to the low-swirl one with the gradually decreasing swirl level. 
The hysteresis effect is yielded, however, mainly owing to a relatively stronger IRZ, which 
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Figure 3. Flow patterns predicted by the lower branch for swirl numbers of (a) 034. (b) 038. (c) 042 and (d) 046 using 
the k-E model in conjunction with the power law scheme 

prevents the expansion of the ERZ. In other words, whether the IRZ is sufficiently strong with 
respect to the ERZ determines the occurrence of the bifurcation. 

The bifurcation of these swirling flow cases offers an explanation of the unusual predictions 
of Sloan et ul.,' since the swirl number of the 38" swirl vane angle case (SN = 0.42) is just within 
this bifurcation solution range. As depicted in Figure 5, where the axial velocity profiles at two 
axial positions, x /R ,  = 1.0 and 2.0, predicted by both the lower- and upper-branch solutions are 
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046 using 

presented in comparison with the experimental data of Yoon and Li l le~ ,**~ the lower-branch 
solution, similarly to the predictions of Sloan el al.,' deviates significantly from the experimental 
result. The upper branch solution, however, yields a result in better agreement with the 
experimental data. The poor performance of the k--E model for the 38" swirl vane angle case 
reported by Sloan et al.' is thus clarified to be mainly attributable to the occurrence of the 
bifurcation flow solutions. If the upper-branch solution is selected, the k-6 model in fact produces 
a result comparable with that of other turbulence models. 



BIFURCATION O F  CONFINED SWIRLING FLOWS 

125 

l o o  

0 7 5  

050 

U/U, 
025  

ow 

-025 

050 

97 1 

. . . . , . , . . , , . , . 1 " "  

0 _ _ _  lowor branch 
- uppor branch , '  

oxporiront data of Yoon and Lilloy 

0 . 0 :  
. .  - 

\ 

- 

- 

- 

- 

;-.-**' - 

I I . . . . I . . . . ,  . . . . I . . . .  

0 rxporimont &tr of Yoon and Lilloy 
_ - - -  lowor branch 
. .- uppor branch 

0.75 

0.50 0 - 
_ - - _  U/U, 

0.25 - 

-0.25 - 

-0.50 
0.0 0.2 0.4 0.6 0.8 1 .o 

r / R ,  
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the k-E model in conjunction with the power law scheme at x / R ,  = (a) 1.0 and (b) 2.0 

Eflects of numerical schemes 

For a confined swirling flow the appearance of the IRZ causes the flow direction to be 
inclined relative to the grid orientation of the normally employed orthogonal grid system, 
resulting in significant numerical diffusion. As demonstrated by Weber er a1.I' and Durst and 
Wennerberg' for such a flow configuration, high-order convection-diffusion schemes can 
diminish the numerical diffusion and produce very different results from those by low-order 
schemes. Therefore the bifurcation phenomenon is also affected by the use of different numerical 
schemes. As depicted in Figure 6, the predicted ratio of the maximum reverse flow rate of the 
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Figure 6. Ratio of the maximum rcverse flow rate of the IRZ to that of the ERZ versus the swirl number predicted by 

both the lower and upper branches using the k-c model in conjunction with the second-order upwind scheme 

IRZ to that of the ERZ versus the swirl number also exhibits dual solutions for a certain swirl 
number range by using the k--E model in conjunction with the second-order upwind scheme. 
The bifurcation solutions are predicted to occur at swirl numbers smaller than 0.25. An 
examination of the predicted bifurcation flow patterns (see Figures 7(a), 7(b) and 8(a), 8(b)) reveals 
that dual flow patterns are exhibited at a swirl number of 0.21 (Figures 7(a) and 7(b) with the 
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Figure 8. Flow patterns predicted by both the (a) lower and (b) upper branches at a swirl number of 0.25 using the k-c 
model in conjunction with the second-order upwind scheme 

low- and high-swirl flow patterns predicted by the lower- and upper-branch solutions respec- 
tively, while single high-swirl flow patterns are predicted by both the lower- and upper-solutions 
at a swirl number of 0.25 (Figures 8(a) and 8(b)). In other words, the flow changes from the 
low-swirl pattern to the high-swirl one as the swirl number increases from 0.21 to 0.25 along the 
lower branch. However, the high-swirl pattern is maintained as the swirl number decreases from 
0-25 down to 0-21 following the upper branch. This result further confirms the postulation that 
the bifurcation of a confined swirling flow stems from a hysteresis effect as the high-swirl flow 
pattern changes to the low-swirl one by a gradual decrease in the swirl level. 

It is noted that the predicted swirl level (SN = 0.25) by the second-order upwind scheme for 
the Occurrence of the bifurcation is well below that predicted by the power law scheme 
(SN = 0.46). This is due to the fact that the latter underpredicts the IRZ stength owing to the 
severe numerical diffusion resulting from the low-order numerical scheme. Thus for the particular 
38" swirl vane angle case (SN = 0.42) a single solution is predicted by the second-order upwind 
scheme, in contrast with the dual solutions predicted using the power law scheme. A comparison 
of the predicted axial velocity profiles shown in Figures 5 and 9 further reveals that the 
second-order scheme yields a result in much better agreement with the experimental data, since 
it gives a better prediction of the forward flow diverting outwards and around the IRZ. Therefore 
the bifurcation solution predicted by the power law scheme for this particular 38" swirl vane 
angle case is in fact numerical rather than physical, resulting from an underprediction of the 
IRZ strength owing to the use of a low-order scheme. 

Effects of turbulence models 

As reported by Weber et al.," the turbulence models have a strong influence on the swirling 
flow predictions and the ASM is superior to the k-E model. However, with the bifurcation of a 
confined swirling flow being discovered and the cause of the reported' poor performance of the 
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k--E model being identified, it is necessary to ascertain whether the effects of the turbulence 
models on the swirling flow predictions are as significant as reported, especially when the 
bifurcation is involved. To this end, the ASM in conjunction with the second-order upwind 
scheme is employed in computations for the present test case and the predicted ratio of the 
maximum reverse flow rate of the IRZ to that of the ERZ versus the swirl number is presented 
in Figure 10. In this case dual solutions are exhibited for swirl numbers smaller than 0.17, 
indicating that the bifurcation occurs independently of the turbulence models used. However, the 
bifurcation is predicted to occur at a swirl number slightly smaller than that predicted by the k--E 
model if the same second-order upwind scheme is employed. Again two flow patterns (see Figures 
1 l(a) and 1 l(b)) are predicted by the ASM at a swirl number of 0.13: the low-swirl one is predicted 
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Figure 10. Ratio of the maximum flow of the IRZ to that of the ERZ versus the swirl number predicted by both the 
lower and upper branches using the ASM in conjunction with the second-order upwind scheme 
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Figure 12. Flow patterns predicted by both the (a) lower and (b) upper branches at a swirl number of 0 1 7  using the 
ASM in conjunction with the second-order upwind scheme 

by the lower branch and the high-swirl one by the upper branch. Both branch solutions, however, 
give identical high-swirl flow patterns for swirl numbers greater than 0.17 (Figures l a a )  and 
12(b)). These results are qualitatively similar to those predicted by the k-E model in conjunction 
with the second-order upwind scheme (Figures 7 and 8). The occurrence of the bifurcation may 
result in a situation which may mislead the evaluation of the turbulence models on the predictions 
of a confined swirling flow. For instance, if the upper-branch solution is picked up by the ASM 
and the lower-branch one by the k--E model, or vice versa, a false conclusion may be reached 
that the ASM and the k--E model perform very differently or the k--E model performs poorly if 
the experimental result happens to coincide with the ASM result. Therefore knowing whether 
the bifurcation occurs is essential in evaluating the predictive capabilities of the turbulence 
models. 

For the particular 38" swirl vane angle case it is interesting to note that by employing either 
the ASM or the &--E model, a single high-swirl flow solution is yielded if the second-order upwind 
scheme is used in computations. The axial velocity profiles predicted by both the ASM and the 
k--E model in conjunction with the same second-order upwind scheme exhibit a similar result 
which is in good agreement with the experimental data. A further examination of the predictions 
reveals that the ASM yields a better prediction in the near-wall region but a worse result in the 
central region. Both predictions are, however, in much better agreement with the experimental 
result in comparison with that predicted by the k--E model in conjunction with the power law 
scheme (see Figures 5 and 9). Therefore the effects of the turbulence models on the swirling flow 
predictions are not as significant as those of the different-order numerical schemes, at least for 
the present flows with low swirl numbers. In other words, the k-E model may produce 
sufficiently good predictions for confined swirling flows, a result in agreement with the work of 
Durst and Wennerberg.' 
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CONCLUSIONS 
The bifurcation of a confined swirling flow was predicted numerically, with the effects of 
numerical schemes and turbulence models being investigated. The following conclusions were 
drawn from the present study: 

1. Dual flow patterns at certain swirl numbers were obtained depending upon the branch 
solution examined. As the swirl number increases along the lower branch of the bifurcation, 
the flow pattern changes from a low-swirl one to a high-swirl one. As the swirl number 
decreases following the upper branch of the bifurcation, the flow can maintain itself in the 
high-swirl flow structure at the swirl numbers where it exhibits the low-swirl one in the 
lower branch, resulting from a hysteresis effect. The Occurrence of the bifurcation of a 
confined swirling flow was predicted by both the k--E model and the ASM, although the 
predicted swirl number range for the occurrence of the bifurcation varies. 

2. For confined swirling flows the k-8 model results in predictions in good agreement with 
the experimental result and comparable with those yielded by the ASM, provided that 
high-order numerical schemes are used. This result is in agreement with the work of Durst 
and Wennerberg,” where satisfactory predictions by the k-& model in conjunction with 
high-order convection-diffusion schemes were reported. The reported’ poor performance 
of the k--E model was clarified to be attributable to either the use of a low-order numerical 
scheme or the Occurrence of dual flow patterns of the bifurcation. 

3. As the first discovery of the bifurcation of a confined swirling flow, the present study was 
confined to numerical predictions on an isothermal flow field. Experimental verifications 
are required to ascertain such a bifurcation phenomenon. Furthermore, since combustion 
alters both the IRZ and ERZ strengths, the bifurcation of a confined swirling, reacting flow 
exhibits very different features from those of a non-reacting flow. This problem, which is 
of particular interest for swirl combustion, will be presented in a subsequent paper. 

APPENDIX : NOMENCLATURE 

constant 
con st ant 
constant 
constant 
constant 
constant 
constant 
turbulent kinetic energy ‘generation’ (g = p P )  
kinetic energy of turbulence 
characteristic dimensional of flow passage 
maximum reverse flow rate 
pressure 
turbulent kinetic energy ‘production’ 
radial co-ordinate 
chamber radius 
inlet tube radius 
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Rh 

Rk 
SN 

UO 
u 

0 

W 

X 

swirler hub radius 
constant 
swirl number 
axial velocity 
inlet average velocity 
radial velocity 
tangential velocity 
axial co-ordinate 

Greek letters 

E turbulent dissipation rate 
P viscosity 
PC 
P' turbulent viscosity 
P density 
c7 Schmidt or Prandtl number 

effective viscosity ($ = p + p') 

Subscripts 
k turbulent kinetic energy 
E dissipation rate 
in inlet 
E external recirculation zone (ERZ) 
I internal recirculation zone (IRZ) 

Superscripts 
( ) Reynods-averaged value 
( 1' fluctuational value 

- 
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